Measurements stories from the trenches

UKMA/COSMIC

International Conference on Software Metrics & Estimation London, October 27th/28th 2011

Erika Vintan

Bank of Montreal Toronto, Canada

Who We Are Background

- Operational Quantitative Management Group (OQMG) – for Bank of Montreal Information Technology
- Provides measurement-related advice and services to:
 - 11 departments (>3,500 employees)
 - CMMI maturity level(0 to 5)
 - Services:
 - Full
 - Partial
 - On request
 - Engagement level
 - Development initiative
 - Department
 - Enterprise

What we did Getting Attention

- Engage Leadership
 - Senior level management for sponsorship
 - Mid level management for commitment
- Ask about pain points
 - Determine area of interest
- Explain benefits
 - Show industry data

What we did Focusing Attention

Show tangible benefits for area of interest

Give practical answers

Define a reality based strategy

What we did Maintaining Attention

Embrace change:
 Re-design program to reflect changes

- Constantly provide feedback
- Train, train, train

INITIATE

Successful Tips:

- Assess the current situation understand the process in place
- Have a vision of what the desired process should be
- Create a prioritized list of issues to address
- Assign necessary resources define roles and responsibilities

INITIATE

Challenges:

- Tendency to discard what has been done build on what you have
- Resistance to change
- Commitment to carry out the plan relay not only on development resources also on management
- Focus on model (i.e. CMMI) do what you think is best for your organization

IMPLEMENT/IMPROVE

Successful Tips:

- Use an approach based on common tailoring
- Define, document and communicate strategic objectives that are aligned with the business vision of the organization
- Map these strategic objectives to operational objectives and to the sub-processes in your organization that are critical for achieving them
- Identify the measurements that are essential to understand how efficient and reliable these processes are

How to do it? IMPLEMENT/IMPROVE

Challenges(1):

- Lack of clear business objectives
- Too many changes at the same time
- Absence of models to assess proposed changes
- Bad experiences
- Lack of participation on the part of personnel
- Process out of control Impossibility of predicting results from implemented changes

IMPLEMENT/IMPROVE

Challenges(2):

- Insufficiently defined processes No models to assess the impact of corrective actions
- Too busy fixing bugs No time to do causal analysis
- Insufficient data or lack of data
- Process undefined Too many special causes
- Lack of tools
- Uncontrolled changes in the process

What made us successfully!

- Sponsorship
- The understanding of audience needs
- A vision of what is desired
- Team work, professional resources
- Flexibility in implementation
- Use of tools

Word of caution!

Don't start from scratch!

Have champions; not everybody is a statistician!

Appendix- samples

- Goals Metrics Indicator Mapping
- Data Analysis
- Models
- Tools
- Report

Goals Metrics Indicator Mapping

Objective	Measurement Goals	Process Performance Objective	Indicators (level)	Measure to be collected
Improve Product Quality and Success Rate	Reduce the defect density (#of testing defects per UCP) in critical applications (RIS) by 5%	Improve Formal Review process (coding) by 15%. Code defects are 33.6% out of total defects. To reduce total defects by 5% we need to reduce Code defects by 15%.	1) Defect Detection Pattern (Development Initiative and Organizational) 2) Defect Root Cause (Development Initiative and Organizational) in minutes, of critical applications 3) Defect Density (Organizational)	# of testing defects found per testing discipline # of peer review defects per development discipline Total # of defects found in testing # of testing defects found per root cause Total # of defects found in testing/UCP
Maintain client satisfaction	Maintain client satisfaction score >4 Maintain > 75% initiatives On- Time, On- Budget (variance 0 to + 10%)	Increase the predictability of productivity level A 5% improvement is the goal to improve the cost estimation process capability. Target is based on the previous Fiscal Year capability.	1) Client Satisfaction (Organizational) 2) On-Time, (Organizational) 3)On-Budget (Organizational) 4) Testing Defect Life Span (Development Initiative)	Initiative's client satisfaction score Schedule variance (estimated vs actual) Cost variance (estimated vs actual) (Effort variance) Amount of time, in days, it takes to close a defect discovered in testing phase

Data Analysis Product Quality

Were

Defect DistributionHighest defect density is in System Testing

Why

Defect Root Cause Biggest "culprit" in the defects found during the Testing Phase is coding.

What Perform more code review

Interpretation:

- Model estimates the Initiative completion date by predicting the rate of opening and closing defects and sets the boundary lines.
- The actual Initiative's rates should fall between these lines if the completion date is to be met

Tools

Minitab - Sample Process Capability Analysis

Results interpretation:

Statistical Analysis of the data shows:

At Level 2, approximately 75% of projects fall within the +/- 40% range

The current estimation processes performs (i.e. within LSL and USL) at the following levels:

WM estimation: -50% to + 56%; Cost estimation: -40% to +39%

The target range of +/- 10% is impossible to achieve with the current process

If we use LSL and USL of +/- 10%, Cpk is 0.14. It must be > 1.0 to show process control

Reports

Process compliance trend (findings/#of audits)

Delivery Rate trend (cost/size)